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Abstract  

The main objective of this work is to study the stability of solutions of a system of 

linear and nonlinear fractional differential equations. The derivatives considered are 

within the meaning of Caputo, and of order between 0 and 2. 
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 History  
 

In mathematics, fractional calculus is a branch of analysis that studies the possibility 

that a differential operator can be raised to a non-integer order. The subject of fractional 

calculus has gained a considerable popularity during the past three decades, mainly due 

to its demonstrated applications in many fields of science and engineering. Indeed, it 

provides several potentially useful tools to solve differential and integral equations, and 

various other problems involving special functions of mathematical physics, as well as 

their extensions and generalizations in one and in several variables.  

Leibniz in a letter dated September 30, 1695 replied: "It will lead to a paradox, from 

which one day useful consequences will be drawn". Several authors consider this letter 

dated September 30, 1695, as the time of birth of the fractional calculation. So fractional 

calculus is a mathematical subject dating back over 300 years. 

The mention of fractional derivatives was made in a certain context, (for example) 

Euler in 1730, Lagrange in 1772, Laplace in 1812, Lacroix in 1819, Fourier in 1822, 

Liouville in 1832, Riemann in 1847, Greer in 1859, Holmgren in 1865, Grinwald in 1867, 

Letnikov in 1868, Sonin in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, and 

Weyl in 1917. In fact, in his 700-page manual, entitled " Traité du calcul différentiel et du 

calcul intégral" (second edition; Courcier, Paris, 1819), SF Lacroix devoted two pages (pp. 

409-410) to fractional calculus, finally showing that: 

 
 
 

  
 
 

   
√ 
 

√ 
          ( ) 

 The first work, devoted exclusively to the subject of fractional calculus, is the book 

of Oldham and Spanier published in 1974. In fact, many other works (books, edited 

volumes, and conference proceedings) have also appeared. There exists the remarkably 

comprehensive encyclopedic-type monograph by Samko, Kilbus and Marichev, which 

was published in Russian in 1987 and in English in 1993, and the book devoted largely to 

fractional differential and integral equations by Miller and Ross, which was published in 

1993. Today, there are at least two international newspapers that are devoted almost 

entirely to the object of fractional calculus: 

 Journal of Fractional Calculus 

 Fractional Calculus and Applied Analysis
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Recently, the stability theory of fractional differential equations (FDEs) is of main 

interest in physical systems. Moreover, some stability results have been found [1–9]. 

These stability results are almost about the linear fractional differential systems with 

commensurate order [2]. 

For example, a necessary and sufficient condition on asymptotic stability of linear 

fractional differential system with order 0 < α ≤ 1 was first given in [3]. Then, some 

literatures on the stability of linear fractional differential systems with order 0 < α ≤ 1 

have been appeared [4–5]. However, not all the fractional differential systems have 

fractional orders in (0, 1). There exist fractional models which have fractional orders 

lying in (1, 2), for example, super-diffusion [6]. Hence, the stability of linear fractional 

differential systems with order 0 < α < 2 has also been considered by using the 

conversion methods and transfer function [7-8]. 
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Introduction  
 

 

Let’s Compare the following two systems of equations: 0 < λ < 1; 0 < α < 1 and 

x(0)=x0. 

 

DX (t) = λtλ-1       x(t) = tλ + x0                           (*) 

c   
  x(t) = λtλ-1       x(t)=

  ( )      

  (  )
 + x0       (**) 

 Or c   
  is the Caputo derivative defined by (11) 

 

We have indeed observed, that the whole order system (*) is unstable whatever λ ∈ 

]0,1[. The non-integer or fractional order system (**) is stable whatever λ ∈ ]0,1- α [. This 

generally shows that fractional systems have different characteristics compared to whole 

order systems. 

 

The aim of this article is to study the solution stability formulas for certain fractional 

differential equations. It consists of three parts: 

 Part 1: Fundamental notions 

 Part 2: The stability of linear fractional differential systems of order α ∈ (0;2) 

 Part 3: The stability of nonlinear fractional differential systems of order α 

∈(0;2) 
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1.Fundamental notions 
 

The aim of this part is to present, in a synthetic and unified manner, the elements on 

the theory of fractional calculus and systems of non-integer derivatives on which our 

work described in parts 2 and 3 is based. 

 

1.1. Required functions for fractions calculator 

 

In this part, we present the functions: Euler's Gamma function, Beta function and 

Mittag-Leffler function which will be used in other parts. These functions play a very 

important role in the theory of fractional calculus. 

 

1.1.1. Gamma function 

One of the basic functions of fractional calculus in mathematics is the Euler's 

Gamma function (or Gamma function). It is a complex function which extends the 

factorial function to the set of complex numbers. 

Definition 

The Gamma function is defined by the following integral: 

 

 ( )  ∫          
 

 
   (Re(z)>0)  (1) 

 

For all complex numbers z, the following recurrence relation is true: 

 

 (   )     ( )  (2) 

 

Consequently, for positive integers: 

 

 (   )       (3) 
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1.1.2. Beta function 

Definition 

The beta function is defined by the Euler integral: 

 

 (   )  ∫     (   )   
 

 
dt (Re(z)>0, Re(w)>0)  (4) 

 

This function is linked to the gamma function by the relation: 

 

 (   )  
 ( ) ( )

 (   )
 (z, w ∉   

 )  (5) 

 

1.1.3. Mittag-Leffler function 

The exponential function   , plays a very important role in the theory of integer-

order differential equations. The generalization of the exponential function with a single 

parameter was introduced by G.M. Mittag-Leffler. 

Definition 

The standard definition of Mittag-Leffler is given as follows: 

 

  ( )   ∑
  

 (    )

  
      (Re( )>0, z ∈ C )  (6) 

 

A two-parameter function of the M-L (Mittag-Leffler) type is defined by the series 

expansion. 

 

    ( )   ∑
  

 (    )

  
      (Re( )>0, β, z ∈ C )  (7) 
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1.2. Riemann Liouville fractional integrals and derivatives  

In this section we give the definitions of Riemann-Liouville fractional integrals and 

derivatives on a bounded interval on R. 

We can start by examining a (unique) formula which gives successive primitives of a 

continuous function for example 

Let y: [a;b)  R, (b    ) a continuous function; a primitive of y which cancels 

out at a is given by: 

(   
  )( )   ∫ ( )  

 

 

 

For a second primitive we will have 

 

(   
  )( )   ∫(∫ ( )  

 

 

)  

 

 

 

 

Fubini's theorem brings us back this double integral to a simple integral 

 

(   
  )( )   ∫(   ) ( )  

 

 

 

 

Then an iteration gives 

 

(   
  )( )   ∫

(   )   

(   ) 
 ( )  
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1.2.1. Riemann-Liouville fractional integral 

Definition 

Let Ω = (a; b] (-∞ < a < b < ∞) a finite interval of the real axis R. The left and right 

Riemann-Liouville fractional integrals     
   and     

   of order α ∈ C (Re ( )>0) are 

defined respectively by: 

 

(    
  )( )   

 

 ( )
∫

 ( )  

(   )   

 

 
  (x>  , Re( )>0)  (8) 

(    
  )( )   

 

 ( )
∫

 ( )  

(   )   

 

 
  (x<b, Re( )>0)  (9) 

 

Here Γ (α) denotes the Euler’s gamma function. 

 

1.2.2. Riemann-Liouville fractional derivative  

 The left and right Riemann–Liouville fractional derivatives     
   and     

   of 

order α ∈ C (Re ( )>0) are defined respectively by: 

 

(    
  )( )  .

 

  
/
 

(    
    )( )  (10) 

 
 

 (   )
 .
 

  
/
 

∫
 ( )  

(   )     

 

 
    (x> α ; n= [Re(α)]+1) 

And  

 

     (    
  )( )  . 

 

  
/
 

(    
    )( )  (10) 

 
 

 (   )
 . 

 

  
/
 

∫
 ( )  

(   )     

 

 
  (x<b ; n= [Re(α)]+1) 

[Re(α)] is the real number of Re(α). 

 

 

 



  ILAعضو الجمعية الدولية للمعرفة         الجمعية المصرية للقراءة والمعرفة              

 

10 
 

I 

R+ 

1.3. Caputo Fractional Derivative 

Let [a,b]: a finite interval of the real axis R,    
 , ( )-( )  (   

  )( ) and , 

   
 , ( )-( )  (   

  )( ) the Riemann-Liouville fractional derivatives of order α ∈ C 

(Re ( ) ≥0) defined respectively by (10) and (11). The fractional derivatives c   
  (x) and 

c   
  (x) of order α ∈ C (Re ( ) ≥0) over the interval [a; b] are defined respectively by: 

 

 (c   
  y) (x) = (   

 , ( )   ∑
 ( ) ( )

  
 (   ) -)( )   

     (11) 

And  

 (c   
  y) (x) = (   

 , ( )   ∑
 ( ) ( )

  
 (   ) -)( )   

     (12) 

 

With: n= [Re ( )-+1 for   ∉ N0, n=   for   ∈ N0 

The derivatives (c   
  y) (x) and (c   

  y) (x) are called the left, right Caputo 

fractional derivative of order α. 

1.4. Laplace transformation 

The Laplace transformation belongs to the very large family of integral 

transformations, which establish a relationship between a function f and its transform F 

in the form: 

 

F(w) = ∫  (   ) ( )     (13) 

 

Definition 

Let f(t) be defined for t ≥ 0. The Laplace transform of f(t), denoted by F(z) or 

L{f(t)}, is an integral transform given by the Laplace integral:  

 

 ( )( )   ∫  ( )        (14) 
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2.The stability of linear fractional differential systems of 

order α ∈ (0;2) 
 

2.1. Preliminaries 

It is useful to recall some lemmas and the asymptotic formulas of the Mettag-leffler 

function. 

Lemma 2.1.1 (Jordan Canonical Form) 

Let A be a n*n complex matrix (i.e., entries of A could be either real numbers or 

complex numbers). Then there are a complex invertible matrix P and a complex block 

diagonal matrix J such that 

         (15) 

 

Where J is a Jordan block (i.e. a square matrix which has zero entries everywhere 

except on the diagonal, where the entries are a fixed scalar, and except on the super 

diagonal, where the entries are either all 0 or all 1). 

Lemma 2.1.2 

If 0 < α < 2, β an arbitrary complex number and μ is an arbitrary real number, such 

as: 

  

 
      *    +     (16) 

 

Lemma 2.1.3 

If A ∈      and 0 < α < 2, β is an arbitrary real number, μ satisfied   

  
  

 
      *    + and C>0, real constants then: 

||     (A)||   
 

         
  (17) 

 

Or μ   |Arg (λ)|    ,   λ ∈ spec (A) such as spec (A): the eigenvalues of the matrix 

A and ||.|| are called l2-norm. 
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Lemma 2.1.4 

If   x(t)   h(t) + ∫  ( )  ( )   
 

  
  t∈ ,  ,T) (18) 

Where all the functions involved are continuous on [  ,T), T     and k(x)  0, 

then x(t) satisfied. 

 

x(t)   h(t) + ∫  ( )  ( )     ,∫  ( )  -   
 

 

 

  
  t∈ ,  ,T) (19) 

 

2.2. Definitions on stability 

Definition 2.2.1 

The constant x e q is an equilibrium point of fractional differential system 

     
  ( )   (   ) if and only if  (     ) =      

  ( )  ( )     for all t>t0, or the operator       

is c     
             

  . 

 

Without loss of generality, Suppose the trivial equilibrium point    = 0, we 

introduce the following definitions. 

 

Definition 2.2.2 

The zero solution of      
  ( )   (   ) of order 0 < α < 1 [or 1 < α < 2] is said to be 

stable if, for any initial value    [or    (k=0,1)], it exists ɛ > 0 such as ||x(t)||   ɛ for all t 

>    . 

 

Definition 2.2.3 

The zero solution is said to be asymptotically stable if in addition to be stable, 

||x(t)||  0 when t  + ∞. 
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2.3. The stability of linear fractional differential systems of order α ∈ 

(0;1) 

2.3.1. autonomous linear fractional differential system 

In this section we study the stability of the solution of the autonomous linear 

fractional differential system with the Caputo derivative in the form: 

   

   
 = Ax(t)  t >     (20) 

x(  )     

 

Or x ∈ Rn, the matrix A ∈      and 0 < α < 1  

 Theorem 2.3.1.1 

The autonomous linear fractional differential system (20) with the Caputo 

derivative is asymptotically stable if and only if |Arg(  )| > 
  

 
       ∈ spec(A). 

Conclusion 

 If   l∈ *   …  s}: |Arg(  )| < 
  

 
 ; then the solution to a system (20) is not stable. 

 If the matrix A has one eigenvalue, the solution to a system (20) is not stable. 

 If the matrix A has one critical eigenvalue     that satisfies, |Arg(  )| < 
  

 
 and that 

the algebraic multiplicity of critical eigenvalue    is not equal to the geometric 

multiplicity, so the solution to a system (20) is not stable. 

 If l∈ *   …   +:    g(  )|   
  

 
 such critical eigenvalues that satisfy |Arg(  )| = 

  

 
 

have the same algebraic and geometric multiplicity, so the solution to a system (20) 

is stable, without having asymptotic stability. 

 

2.3.2. Non-autonomous linear fractional differential system 

In this section we study the stability of the solution of the non-autonomous linear 

fractional differential system with the Caputo derivative in the form: 

   

   
 = Ax(t)+B(t)x(t)  t >     (21) 

x(  )     

 

Or x ∈ Rn, the matrix A ∈      , 0 < α < 1 and B(t): [  ,   [       is a 

continuously differentiable matrix. 
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Theorem 2.3.2.1 

If       ∈ spec(A)  , |Arg(  )|   
  

 
, such critical eigenvalues that satisfy |Arg(  )| = 

  

 
 have the same algebraic and geometric multiplicity and ∫    ( )  

 

  
 is bounded. So the 

solution to a system (21) is stable. 

 

We get the solution to a system (21) using the Laplace Transform and the Inverse 

Laplace Transform: 

x(t) =    ( (    )
 )      ∫ (   )

    

  
     ( (   )

 ) ( )  ( )   (22) 

 

Theorem 2.3.2.2 

If the matrix A satisfy      ∈ spec(A)   , |Arg(  )|   
  

 
 and ||B(t)||=O (    )

  (-

1< <1- α,     ) for t    

 

So: the solution to a system (21) is asymptotically stable. 

 

2.3.3. Disturbed linear fractional differential system 

In this section we study the stability of the disturbed linear fractional differential 

system with the Caputo derivative in the form: 

   

   
 = Ax(t)+f(t, x(t))  t >     (23) 

 ( )(  )       (k=0;1) 

 

Or x ∈ Rn, the matrix A ∈      , 1 < α < 2 and f(t, x(t)): [  ,   [ *        is a 

continuous function with f(t, 0) = 0, f(t,x) satisfies the Lipschtz condition for x, the 

unique solution to a system (23) is: 

x(t)=∑ (    )
  

         ( (    )
 )      ∫ (   )

    

  
     ( (   )

 )  (   ( ))         

(24) 
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Figure 1: Stability regions of linear fractional differential systems of order α ∈ (0;1) 

Theorem 2.3.3.1 

If the matrix A satisfy      ∈ spec(A)   , |Arg(  )|   
  

 
 such critical eigenvalues 

that satisfy |Arg(  )| = 
  

 
 have the same algebraic and geometric multiplicity, moreover 

there is a function  ( ) that satisfy the following conditions: 

 ∫  ( )   
 

  
 is bounded 

 ||f(t,x)||    ( )||x(t)|| 

So: the solution to a system (23) is stable. 

Conclusion 

 Consider the following linear fractional system of order α ∈ (0;1) 

   

   
 = Ax(t)  t >     (25) 

x (  )       (k=0;1) 

 

Or x ∈ Rn, the matrix A ∈      , 0 < α < 1 

The stability theorem (2.3.1.1), it determines the different stable and unstable 

regions (Figure 1) 
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Figure 2: Stability regions of linear fractional differential systems of order α ∈ 

(1;2) 

 

 Consider the following linear fractional system of order α ∈ (1;2) 

   

   
 = Ax(t)  t >     (26) 

 ( )(  )       (k=0;1) 

 

Or x ∈ Rn, the matrix A ∈      , 1 < α < 2 

 

The stability theorem (2.3.2.1), it determines the different stable and unstable 

regions (Figure 2) 
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3. The stability of nonlinear fractional differential systems of 

order α ∈ (0;2) 
 

 

3.1. Definitions  

Definition 3.1.1 

If there exist a constant e such that f(e)=0, so “e” is said: the point of equilibrium 

for 
   

   
 = f(x) 

 

Definition 3.1.2 

The point of equilibrium “e” is said: 

 Locally stable: if and only if           such as |x(t)-e|<   for     ∈ * :   -e|< 

 } and        

 locally asymptotically stable: if and only if the point of equilibrium is locally stable 

and         ( ) = e 

 

3.2. The stability of nonlinear fractional differential systems of order α 

∈ (0;1) 

In this section we study the local asymptotic stability of the point of equilibrium of 

the nonlinear fractional differential system in the form: 

 

   

   
 = f(x)  t >0  (27) 

x ( )        

 

Or f is continuous, 0 < α < 1 and the derivative is in the sense of Caputo derivative. 
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3.3. The stability of nonlinear fractional differential systems of order α 

∈ (1;2) 

In this section we study the local asymptotic stability of the solution of the 

nonlinear fractional differential system in the form: 

   

   
 = f(x)  t >0  (28) 

x ( )      x’(0)=b   

 

Or 1 < α < 2 and Caputo derivative. 

Definition 3.3.1 

Let α    , the operator    
 defined in L1 [a,b] with : 

 

   
  ( )  

 

 ( )
∫ (   )     ( )  
 

 
  (29) 

 

For a   x   b, is called the integral operator of Riemann-Liouville of order α 

Note 

     
  ( )  

 

  
,
 

 ( )
∫  ( )  
 

 
-     ( )  (30) 

 

Definition 3.3.2 

Let α    , and n= [ α] so we define the Caputo fractional derivative of order α 

with: 

c  
       

        

with     ∈ L1 [a,b]  

 

 If α ∈ N0, so n= α : c  
   =    

      =     
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Conclusion 
 

 

 

 The solution for system of linear fractional differential equations of order 0< α < 2 

is stable if and only if all the eigenvalues of the matrix of A satisfy |Arg(  )|   
  

 
 

such critical eigenvalues that satisfy |Arg(  )| = 
  

 
 have the same algebraic and 

geometric multiplicity, without having asymptotic stability. 

 

 In the case of scalar equation, after the linearization of linear fractional differential 

equations of order 0< α < 1, we prove if a function f(x) is continuous and 
  ( )

  
 < 0, 

so the solution is locally asymptotically stable. 

 

 Studying the stability of nonlinear fractional differential equations of order 1< α < 

2, we transform it into a nonlinear fractional differential equation of order 0< α < 

1. So, the only question that remains is: how to determine the conditions in the 

Nonlinear Part, which allow the stability study to a system of linear fractional 

differential equations. 
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